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Popular Summary

New state of the art methodology is described to analyze AIRS/AMSU/HSB data in the
presence of multiple cloud formations. The methodology forms the basis for the AIRS
Science Team algorithm which will be used to analyze AIRS/AMSU/HSB data on EOS
Aqua. Results are shown for AIRS Science Team simulation studies with multiple cloud
formations. These simulation studies imply that clear column radiances can be
reconstructed under partial cloud cover with an accuracy comparable to single spot
channel noise in the temperature and water vapor sounding regions, temperature
soundings can be produced under partial cloud cover with RMS errors on the order of, or
better than, 1°K in 1 km thick layers from the surface to 700 mb, 1 km layers from 700
mb to 300 mb, 3 km layers from 300 mb to 30 mb, and 5 km layers from 30 mb to 1 mb,
and moisture profiles can be obtained with an accuracy better than 20% absolute errors in
1 km layers from the surface to nearly 200 mb.
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ABSTRACT

New state of the art methodology is described to
analyze AIRS/AMSU/HSB data in the presence of
multiple cloud formations. The methodology forms
the basis for the AIRS Science Team algorithm which
will be used to analyze AIRS/AMSU/HSB data on
EOS Aqua. The cloud clearing methodology requires
no knowledge of the spectral properties of the clouds.
The basic retrieval methodology is general and
extracts the maximum information from the radiances,
consistent with the channel noise covariance matrix,
The retrieval methodology minimizes the dependence
of the solution on the first guess ficld and the first
guess error characteristics. Results are shown for
AIRS Science Team simulation studies with multiple
cloud formations. These simulation studies imply that
clear column radiances can be reconstructed under
partial cloud cover with an accuracy comparable to
single spot channel noise in the temperature and water
vapor sounding regions, temperature soundings can be
produced under partial cloud cover with RMS errors
on the order of, or better than, 1°K in 1 km thick
layers from the surface to 700 mb, 1 km layers from
700 mb to 300 mb, 3 km layers from 300 mb to 30 mb,
and S km layers from 30 mb to 1 mb, and moisture
profiles can be obtained with an accuracy better than
20% absolute errors in 1 km layers from the surface to
nearly 200 mb.

1. INTRODUCTION

AIRS (Atmospheric Infrared Sounder) is a high spectral
resolution (v/Av = 1200) infrared sounder, with 2378

channels covering the spectral domain 650 el - 2675

cm'l, which will fly on the EOS Aqua platform in
2002, accompanied by the AMSU A (Advanced

Microwave Sounding Unit A) and HSB (Humidity
Sounder for Brazil, which is similar to AMSU B). The
AIRS footprint is 13 km at nadir, as is the HSB
footprint, with a 3x3 array of AIRS and HSB footprints
falling into a single AMSU A footprint. Characteristics
of the AIRS instrument are given in Aumann et al,
2002.

Susskind et al., 1998 described the first version of the
methodology used by the AIRS Science team to analyze
AIRS/AMSU/HSB data in the presence of clouds to
determine surface skin temperature, surface spectral
emissivity and bi-directional reflectance, atmospheric
temperature-moisture-ozone profile, and the heights and
amounts of different layers of clouds in the fields of
view. Two important characteristics of the basic
retrieval methodology are that no assumptions are
needed about the spectral properties of the clouds and
no assumptions are needed about the intrinsic accuracy
of the first guess field used to start the iterative process.
This paper describes further theoretical improvements
in the retrieval and cloud clearing methodology
incorporated in the current version of the AIRS Science
team algorithm which will be used to analyze
AII‘{S/AMSU/HSB data on the EOS Aqua platform.
The following sections will describe the basic
methodology used to estimate cloud cleared AIRS
radiances, which are subsequently used to retrieve
surface and atmospheric geophysical parameters other
than cloud parameters as well as to derive the effects of
clouds on the channel noise covariance matrix; describe
the inversion methodology, which makes strong use of
the channel noise covariance matrix and is applicable to
solving for all the geophysical parameters including
cloud parameters; and show sample results from AIRS
Science Team simulations.




2. CLOUD CLEARING METHODOLOGY

Clouds have a significant effect on observed infra-red
radiances, and can have smaller but non negligible
effects on microwave observations as well. Therefore,
an accurate treatment of the effects of clouds on the
observed AIRS radiances is critical to obtaining
accurate soundings. There are three basic approaches
for treating cloud effects on the IR observations: look
for clear spots and therefore avoid the problem; attempt
to solve for the radiative effects of clouds directly in the
inversion process; and attempt to infer what the
radiances in the clear portions of the scene would be,
called clear column radiances, from observations in a
number of adjacent fields of view. An example of the
first approach is given by Cuomo et al. (1993). Eyre
(1989a, 1990) has used the second approach in
simulation by assuming an unknown homogeneous
amount of black clouds at an unknown pressure, and
attempted it with real TOVS data as well (Eyre, 1989b).
Our approach, like that used in Susskind et al, (1997), is
of the third type and is an extension of that used by
Smith (1968), and Chahine (1974, 1977). The
advantage of this approach is that it does not have the
clear sky sampling bias of the first approach, nor does it
require the ability to accurately model the spectral
emissive, reflective, and transmissive properties of the
clouds, and their dependence on the vertical
microphysics and geometry, as required by the second
approach. The key assumption made in the third
approach is that while there may be many types of
clouds in the different fields of view, the radiative
properties of a given type of cloud are identical in all
fields of view, which differ only in the relative amounts
of these cloud types. Fields of view containing clouds
with the same optical properties but at different heights,
or clouds at the same height but with different optical
properties, can be considered as having multiple cloud
types. The other key assumption of this approach is
that the fields of view have the same characteristics in
the clear portions of their scenes, with unknown
temperatures, humidities, etc. that we are trying to
solve for. We have used analogous assumptions in
analyzing 22 years of TOVS data on board the NOAA
operational satellites (Susskind et al., 1997) and shown
that retrieval accuracy does not degrade appreciably
with increasing cloud cover (Chahine and Susskind,
1989). Analogous assumptions are made by
NOAA/NESDIS in production of their clear column
radiances used in generation of operational
HIRS2/MSU retrievals (McMillin and Dean, 1982).

Using these assumptions, Chahine (1977) has shown
that in the case of K-1 cloud formations, observations in

K fields of view are needed to obtain channel i clear
column radiances R; according to

. K-1
Ri=Ri1+ kzl'flk (Ri1 ~Rik+1-k) t))

where R; i is the channel i observation in field of view

k. We have found it is advantageous (as suggested by
L. McMillin) to extrapolate the radiances in the K fields
of view according to a similar equation of the form

. K
Ri=RjavGg *+ kzlﬂk(Ri.Avc;"Ri,k) (2)

where R avg is the average radiance of all fields of

view. Optimal values of n, will give true values of R;
up to instrumental noise effects.

Cloud formations should be distinguished from cloud
types. For example, if three fields of view are
considered, and two cloud types exist, with cloud top
pressures at 300 mb and 700 mb, and the respective
cloud fractions as seen from above are (10%, 20%),
(20%, 40%), and (30%, 60%) in each field of view,
then only a single cloud formation exists with cloud
fractions of 30%, 60%, and 90% in each field of view
respectively. If instead, the third field of view had
cloud fractions of 30% and 65%, then 5% of a second
cloud formation exists in the third field of view only.
The above discussion applies only to cases in which the
upper cloud type is opaque, and a portion of the scene,
as observed from above, corresponds to cloud type 1,
cloud type 2, or the surface. If the upper cloud type is
semi-transparent, then a portion of the scene can
correspond to cloud type 1 overlaying the surface, cloud
type 1 overlaying cloud type 2, cloud type 2, and the
surface. In such a case, three cloud formations will
exist in general even if the relative amounts of each
cloud type are as initially stated above.

The methodology we use to determine n is general for
handling up to K-1 cloud formations. The simulations
done by the AIRS Science Team, and shown in this
paper, used essentially two cloud formations of gray
clouds with differing amounts of clouds at 2 discrete
levels in each of the 9 AIRS footprints within an AMSU
A footprint. The cloud spectral emissivities and cloud
top pressures were allowed to vary slightly between
fields of view, however. Surface skin properties also
had some variability between fields of view. This
allows for multiple degrees of freedom within the 3x3
array of AIRS spots in a single AMSU A footprint.



Susskind et al. (1998) used the 9 AIRS spots within an
AMSU A footprint to construct 3 fields of view used to
determine 2 values of m to be used in Equation 1.
Field of view 1 was comprised of the average of the
observations in the 3 warmest spots in an 8 pm
window channel, and field of view 3 was the average of
3 coldest spots. We now use all radiances in all spots
separately and determine 9 values of 7. Given mny,
clear column radiances for all channels can be obtained
from Equation 2. As in Susskind et al. (1998), we
determine the values M and from observations in a
selected set of I(= 76) cloud filtering channels which
are primarily in between lines in the 15 pm CO, band
and in the 42 pm CO, bandhead region, with some
additional channels in the window regions. If, for each
channel i, one substitutes an estimate of RicLr for Rj
in Equation 2, this gives I equations for K unknowns.
The unconstrained weighted least square solution to this
multilinear problem is given by

nka = [ARN7AR | g RN ARcr )

where AR is a IxK matrix with AR; x =Ravc —Rik-
ARCLR is an Ix1 matrix given by
AR; cLr =Ricir —Riavg, and N is an IxI channel
noise covariance matrix.

The 9 radiances Rk are observed at 3 different zenith

angles. Having observations at different zenith angles
will cause additional contributions to AR which are not
due to differences in cloud cover. To remove these, we
adjust all observed channel radiances to what they
would have been if taken at the central zenith angle of
the 3x3 array of AIRS spots according to Goldberg et
al, 2002. From now on, AR refers to adjusted
observed radiances.

The key to the accurate determination of 1 is obtaining
the best estimates of AR; g, along with an accurate

treatment of the noise covariance matrix N. As in
Susskind et al. (1998), we assume the noise in channel i
used to determine m is dominated by errors in
AR; cLr. The values of AR;crLr which we use to

determine 1 (and R;) are iterative and are computed
based on the current best estimate of all relevant surface
and atmospheric properties. For optimal results, it is
important for the estimated geophysical parameters to
be unbiased over large regions of the atmosphere. For
example, if the estimated temperature profile were
uniformly too warm, values of AR crr would all be

too high and incorrect values of 1, would be obtained
which would reconstruct too high values of R;. To
avoid this, we make sure that the profile used to
estimate R;cLr is consistent with observations in all
AMSU A and HSB channels, thus insuring an unbiased
temperature and moisture profile over coarse layers in
the atmosphere. It would be a mistake to use an
analysis or a forecast field directly to compute RicLr
because this field, while potentially accurate, could be
biased in the vertical.

The iterative methodology to determine clear column
radiances consists of four passes to determine n® (o=
1,2, 3, 4), using four sets of conditions, described later,
to estimate R'cLr, in which RicLr and hence n",
become increasingly more accurate for each iteration.
Each set of conditions has its own N", reflecting
expected errors in R{fCLR ~Rj1. The diagonal term of
the noise covariance matrix is modeled according to
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and the off diagonal term is given by
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where NEAN; is the channel i instrumental noise and

the remaining terms are contributions to errors in the
computed value RicLr resulting from errors in

estimated surface skin temperature, surface spectral
emissivity, surface spectral bi-directional reflectance of
solar radiation, and temperature and moisture profile
respectively. The partial derivatives are determined
empirically by computing the radiance using the current
estimate of each parameter and recomputing it after a
small change in that parameter. In Susskind et al.
(1998), the uncertainties, such as ST, are specified so
as to be indicative of the expected errors for that
parameter in pass n. We now predict these errors on a




profile by profile basis for each pass by propagation of
expected sources of error through the retrieval process
in a manner to be described later. A principal source of
retrieval error arises from errors in the reconstructed
clear column radiances. These errors propagate into
degraded estimates of all the variables shown in
Equation 4.

Selection of Optimal Fields of View

The effects of instrumental noise on the clear column
radiances will in general be amplified from single spot
noise values because the clear column radiances are
expressed as a linear combination of the observations in
different fields of view. If there were no other sources
of error, the diagonal term of the clear column radiance
noise covariance matrix in a given pass in Equation 2
would be

[Sﬁ' 5ﬁ']ii= NEAN? - Aln, ¥ (5)

where A(n k) is the noise amplification factor, given by
1/2

2
9 (1 9
s 3 (g ]| o

A(ny) is approximately equal to [2 N> ]”2 because

the first term, containing the factor 1/9, is small. It is
desirable to find an accurate expression for clear
column radiance which minimizes A(nk). We can

minimize A(n k) by expressing Equation 2 in terms of

radiances in an optimal set of fields of view, given by
linear combinations of the original set. The optimal
A(nk) can be found by transforming the original

contrast fields, to a new set, ARE , according to

ARy EEUk,k”ARi,k' @

where U is the unitary transformation which
diagonalizes AR’ N1.AR

’ ’ -1
[ (v N7 aR)U Jwr= A B ®)
This is equivalent to having selected

T
Ry =Rave _E:Uk,k’(RAVG ~Ry’)- Q)

One eigenvalue Ay is always zero because only 8
linearly independent values of AR,y exist. In
transformed space,

. K
Ri =R avG + ;-TCK' Ang (10)

and the solution for {y is given by
-1 T -1
Ck = Ak (AR ‘N ~ARCLR) 11

where ARH{ is the transpose of ARIk .

It is apparent that large eigenvalues Ax imply low
values of {x while small eigenvalues imply large (and
undesirable) values of {k. The eigenvalues themselves
indicate the degrees of freedom in the radiances in the
different fields of view corresponding to the different
number of cloud formations. Typical cloud formation
eigenvalues are the order of 1000. We discard all
eigenvalues less than 25 and set Kmax accordingly,
with the constraint that Kmax is never greater than 4,
We also do not include any eigenfunction whose
eigenvalue is less than the uncertainty in {, given

later in Equation 13.  This reduces the noise
amplification factor by suppressing noise in the solution

K
of Ny = ¥ Ui x Lk’ » resulting in lower values of
k=l

n.

Under certain pathological conditions, one¢ or more
cloud formations may not result in significant
eigenvalues of AR'N"!AR and cannot be solved for,
resulting in a poor solution. The most obvious example
of this is a single cloud formation with a constant cloud
fraction in each field of view. Here AR is comprised
of noise only. The most common examples of this are
all fields of view are clear, which is a benign case, or
all fields of view are overcast, which is a case which
must be otherwise identified and rejected. Likewise,
with two cloud formations, if the lower cloud deck is
overcast, a proper resonstruction of the clear column
radiances cannot be obtained. In this case, if the cloud
fraction of the upper cloud in fields of view k is Ok,

then the lower cloud fraction as seen from above, a2k,
is 1—oty . In general, if oy = A+ Boyk for all k, then
cloud formation 2 will have a zero eigenvalue of
AR'N"!AR up to noise effects. The benign case occurs
when A=0, corresponding to a truly single cloud
formation.



Contribution of clouds to the retrieval channel noise

covariance matrix M

The basic retrieval methodology described in the next
section requires a channel noise covariance matrix M
representing channel correlated errors in the terms

6{-, —Rim) and @j - R'J“) where R is the radiance
computed for channel i based on the mt® iterative
solution. The channel noise covariance matrix is the
sum of two parts, resulting from noise in the
reconstructed clear column radiances 8R; with noise
covariance M, and noise in the computed radiances
SR™ due to uncertainty in the parameters assumed
known, with noise covariance M .

Mij =[&i81i’]ij is the expected noise covariance
matrix for the channel clear column radiances. The
noise in R; obtained from Equation 2 has two parts,
arising from instrumental noise NEAN;, and from
cloud clearing errors coming from errors in {x . Errors
in {x will cause channel correlated clear column
radiance errors. Clear column radiances for those

channels affected by clouds will have this additional
error due to errors in {. For the AIRS instrument, the

channel noise is spectrally uncorrelated, giving the final
result

[oR 8] =NEAN? A(m, ¥ + [ar Tt ar™ ],

(12a)
and
[sR8R];; = [ART 8§8§'ART'] i (12b)
where 8L 8’ is the error covariance of {. If N, as

defined in Equation 4, is indeed representative of the
noise in the determination of n, then it can be shown
(see Equation 38) that

[86 8¢ ik = [ART'N_IART ]°l= Ak k. (13)

In the special case for which we determine that channel
i does not "see” the clouds (i.e., stratospheric sounding
channels or tropospheric sounding channels peaking
significantly above the highest cloud top), the clear
column radiance is best described as the average
radiance in all fields of view. For these channels, the

scene appears to be clear and we can define effective
values of nCLR for “clear” channels as nkCLR =0 for
all k. For these channels (see Equation 6),

AQR )=—; (14)

which is a noise reducer. For “clear” channel i, one can
write

~ 1 2
where j is any other channel and Sl-j is the Kronecker

delta function.

For a channel to be determined not to see clouds, it
must be included in a list showing a 95% probability of
not seeing a cloud, which is pre-computed as a function
of cloud top pressure and zenith angle. In addition, the
standard deviation of the radiances in the 3x3 array of
AIRS spots must be less than twice the channel noise.

For channels which see clouds, the clear column noise
covariance can now be expressed as

K
v 2 T ApT -1
M;; = NEAN; NEAN; A(n, )8 + kﬂ_’: (ARE AR ) -
(16)

Errors in clear column radiances can be largler than
predicted by Equation 16, however, because A is just
an estimate of (8¢ SC')kk, . Moreover, Equation 16 does
not take into account contributions to the noise
covariance matrix arising from higher components of {

not solved for (k > K __) as well as fitting errors due to a
poor first guess. Another estimate of the error in the [

parameters can be computed using weighted radiance
residuals in the channels used in the cloud clearing
retrieval, Ri.CLR - lii. If we take Ri,CLR - Iij as the
uncertainty of AR; cpgr, then using Equation 11, we
estimate the uncertainty in {; according to

2
"y 1 — -
[5§5C ]kk= [T Z(ARIEiNii|)Z(Ri,CLR —Ri)2(17)
k 1
which we evaluate for all significant functions k with
Ak >107. This includes eigen functions with A

< 25 and therefore not included in the solution for R;.
For values of k <K .5, we take '

[3688" = MAX[Ak‘I-[ﬁéS&']kk] (18)
and for values of k between K, and K (significant
eigenvalues Ay > 107%) we set



[808% Tua= [ 68 [ (19)
and wrile

M;; = NEAN; NEAN; A(ny )’ 35,
Ksig T T ; (20)
+k21 ARj AR [8E8C7] i

One can think of Equation 20 in terms of a different
effective noise amplification factor A;g for each

channel i
M, = NEAN;? A%ieft 30
where
b ART(OC L |
Aiere =| Ai)" + k§1 NEAN,? . @

The channel effective noise amplification factor is
largest for channels which see the surface and have
potentially large values of the scene contrast AR, k.

We find it convenient to define an effective noise
amplification factor relevant (o the surface channel
retrieval step as the RMS value of A, over all

NSUREF infrared channels used in the surface retrieval
step

1 NSURF
Age =

112
NSURF Ai,eff2] : (23)

i=1

Very large values of A.g can arise when dCBL is large
(A is sometimes 100 or more) and indicate a large
uncertainty in the determination of the clear column
radiances. These large uncertainties are sometimes
caused by hidden, or nearly hidden cloud formations,
and often correlate with poor solutions.

3. BASIC RETRIEVAL METHODOLOGY

The basic retrieval methodology is the same as that of
Susskind et al. (1998) and is reviewed below. After a
start up procedure to determine the clear column
radiances, we use AIRS/AMSU/HSB data to retrieve:

a) surface skin temperature, surface spectral emissivity
and surface bi-directional reflectance of solar radiation;
b) atmospheric temperature profile; ¢) atmospheric
moisture profile; d) atmospheric ozone profile; and

¢) cloud properties. These steps are done sequentially,
solving only for the variables to be determined in each

step and using previously determined variables as fixed
but with an appropriate uncertainty attached to them
which is accounted for in the channel noise covariance
matrix M. The objective in each step is to find
solutions which best match the observations for a select
set of channels, bearing in mind the channel noise
estimates. The "observations” in steps a-d are the clear
column radiances as determined from Equations 10 and
11, with values of C_.CLR used for appropriate channels.

The cloud parameters determined from step ¢ are found
so as to be most consistent with the actual observed
radiances and the clear sky geophysical parameters
determined from steps a-d. Steps a-d are ordered so as
to allow for selection of channels in each step which are
primarily sensitive to variables to be determined in that
step or determined in a previous siep, and relatively
insensitive to other parameters. Separation of the
problem in this manner also allows for the problem in
each step to be made as linear as possible.  Steps a-e
are all solved for in a completely analogous manner,
linearizing the problem about initial guess parameters
and iterating the solution until convergence is reached.
In general, these linear equations are ill conditioned and
require some form of stabilization, which is commonly
based on an estimate of the accuracy of the a-priori
information obtained in the first guess or background
field (Rodgers, 1976, Hanel et al, 1992).  The
methodology we have developed, described in the next
section, relies exclusively on the signal to noise of the
observations to indicate the degree to which the
information contained in the radiances should be
believed, and does not involve use of an estimate of the
accuracy of the background field.

Iterative least squares solution to the non-linear
problem

The solution to each of the five steps described above is
done in the form

L L
X™ = X"+ TF, AAP =X%+ TE AT (29
=1 =1

where X™ is the m'l iterative state, F, isasetof L
functions, and

AT = APTL AT (25)

AA?[1 is determined each iteration so as (o minimize the

residuals A©™, weighted inversely with respect to
expected noise levels, for the channels used to
determine A ;. The residual for channel I is defined as



- dB, "
407 =R;-R" )(T’E-Lm (26)

where lii is the reconstructed clear column radiance,
R is the radiance computed from the m” iterative
parameters, and ©f is the brightness temperature
corresponding (0 R". The m" iterative residual for

channel i is attributed to errors in the coefficients SA™
and to the noise effects,

A@:n = ZSi[ BA? + éi , @n
£

where S, is an element of the sensitivity matrix, or
Jacobian, given by

gp 2RI (98,) o
YT 9A, \ AT Jgm
1

and the noise factor éi for a given case has two parts.
errors in observed clear column radiance 8C:)i which are
affected by instrumental noise and cloud clearing
errors, and computational noise S

In the simulations done thus far, we have assumed
perfect knowledge of physics, i.e., if we know all of the
variables exactly, we can compute exact noise free
radiances. Nevertheless, the transmittances depend on
the variables to be solved for. Therefore,
computational noise exists. Computational noise,
arising from errors such as a low (high) estimate of
atmospheric water vapor, will produce noise that is
spectrally correlated. Instrumental noise is spectrally
uncorrelated but cloud cleared radiance errors are
correlated. Each retrieval step in pass n uses an
appropriate noise covariance matrix

(9B Y (9B
M;; = (M + M )(—d—TL]e ('d—r* X (29)
i i

where M was defined in Equation 20.

The matrix M in Equation 29 represents channel
correlated uncertainties in the computed radiances R

and ij based primarily on uncertainties in the

parameters being held fixed in a given retrieval step.
For example, when we are solving for temperature

profile, we are holding fixed surface parameters,
moisture profile, and ozone profile. We currently write

2
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The terms in Equations 30a and 30b do not depend to
first order on the variables being solved for or the
iterative state m. The term 0.12 included in Equation
30a is taken to represent additional uncertainties in
computed brightness temperatures based on the
imperfect knowledge of the variables being solved for,
as well as potential spectroscopic  errors. The
methodology used to predict and propagate Crrors such
as ST, for use in the computation of M will be
discussed later. These terms are analogous t0 the terms
in Equation 4, but uncertainty in O3 profile was not
included in Equation 4 as it did not prove to have a
significant effect on the solution and the calculation is
computationally expensive.

Application of a constraint H

The standard constrained solution (Hanel et al., 1992)
to this problem is given by

’ 1 ’
AAm=[Sm Mls™ +Hm] g™ M~ @™ an

— m Aem
is a stabilization matrix.  Without
would minimize the weighted

where H™
stabilization, SAA
residuals A@’M ™A@, but the matrix elements of D
might be large. This is undesirable as it amplifies errors
in A®™ in determining AA™ . The key to optimization
of the solution lies in accurate treatment of the terms



A®, S and M; a judicious choice of the functions F and
channels i; and optimal treatment of the constraint
matrix H. Hanel et al. (1992) and Rodgers (1976) have
reviewed several methods of constraining the ill-
conditioned inverse problem. In the minimum variance
approach (Rodgers, 1976), H is taken to be the inverse
of the a priori error covariance. If the statistics of both
the measurement and a priori are Gaussian, the
maximum likelihood solution is obtained. If the a
priori covariance is taken to be H=1, the maximum
entropy solution is obtained. Other forms of H include
the first or second derivative formulations (Twomey,
1963) that force a smoothness constraint on the
solution. The solution can also be constrained by the
relaxation method (Chahine, 1968) and by the Backus
and Gilbert (1970) method.

The minimum variance and maximum likelihood
solutions are often considered to be “optimal.”
However, if the a priori error covariance is not known
or estimated incorrectly, the solution will be sub-
optimal. If the a priori errors are underestimated, the
solution could be overconstrained. This could
potentially create biases in the retrievals. The biases
may mask small trends in the retrieved data that one
may be trying to extract. The approach described here
attempts to keep the effects of instrument noise at a
tolerable level without assumptions regarding the a
priori data error covariance.

Our objective is to determine a constraint matrix that
affects only the pieces of information not well
determined by the radiances. This involves use of an
optimal set of functions G, related to F by a unitary
transformation

G=FU (32)
in terms of which we could write

X™ = X®' £ GAB™ = X™ ! + FUAB™ =X"™"' + FAA™ .
(33)
In terms of the functions G, Equation 31 becomes

- _i
AB™ = U'AA™ = (U™'S” MSmU™ + HT)
U™'s™ M (ae™ - s0™ ). (34)
A new term 50™ ! has been included in Equation 34
which is a background correction term that is zero in
the first iteration and will be discussed in detail later.
The optimal transformation matrix U™ is chosen so
that U™ S™M™'S™U™ is diagonal with cigenvalues
A.. The inverse of each eigenvalue is the variance of

eigenmode G,. The unconstrained solution, with both
Hjj =0 and with no background correction (8@“ = ()) ,
is given by
1 ’ .
AB™ (0)= (™) (U™'sm'M™!) ae™
P ©=07) ( )

1

= () apae” (35)
where d* is the ¢™ row of u™smMt,
of A¢, indicating ill-conditioned variables G, would
lead to large coefficients of A®" in the determination
of ABT if the solution for the coefficients of these

functions were unconstrained. We therefore only
constrain the solution of those functions G, with low

eigenvalues and set Hfy = AX7 8. The constrained

Low values

solution is now given by

m

AB? (M?):E—tm ABT(0) =@ AB}'(0) (36)
where @ is a damping factor equal to unity if no
constraint is applied and zero if AX, is infinite. If
@, =1, all the information about G, obtained from the
radiances is believed. Otherwise only @, of the
information in the radiances is believed, and (1—<Dg)
of the a-priori information is believed.

The objective of damping a mode is to reduce
propagation of noise SBg(AM) which is given by

SBT @x"; )= QJ,}‘ + AN?)—[ (U“"S‘“'M -1 )lsé“‘ 37

where 50™ is the noise in A@;. A statistical estimate
of 8BY' over an ensemble of profiles is given by

5B, (,)=[s8" 80 =2 + 97 )

[u™'s™ m-'s866'M gmy™ L2

mY /2
Qe i 172
= =, (AT (38)
AT AN ¢2)

to the extent that M accurately represents 5@)8(:)', the
noise covariance of A®. We assign a noise
propagation threshold ABy,,x for each type of retrieval
(surface properties, temperature profile, etc.) and set
AXp =0 if 8B (0) < ABmax. Otherwise, we obtain

A\, such that 8B;(AXs) = ABps -



Formulation of the background term

The need for an iterative process arises because the
radiative transfer equation is not linear. In every

iteration, we recompute Oim, as well as
$™ U™ and A™. If the solutions were completely
linear, and we applied no damping, then

A0™(0)=6 - 0™ 0)=20™ -8" U™ AB" (0)
, 39

1
and AB™ " (0) would be determined to be zero
because AB™ (0) would have already minimized the

residuals A@™ .

The residual A@™! s not zero however, both
because @™*'(0) is not given exactly by
O™ + S"U™AB™ (0) as a result of non-linearity, and
because ABY = ABY (0). As a result of applying
ABY rather than AB{' (0), we obtain

A@™ = A0™1(0)+ S™U™ [AB™ (0) - 88" |

=A™ (0)+ 0™ 40)

In Equation 40, AO®TH(0) represents the portion of
A®™* (hat is due to effects of non-linearity on the
solution, while 3©™ represents the residual portion
of A@™ due to the effects of damping in iteration
m. The second term is zero for undamped modes and
increases in significance with increased damping.
This term is also zero for all modes in the first
iteration. We only want to include the effects of non-
linearity on AO™ in the iterative procedure used in
the determination of AB”™.  Therefore, the
background term to be used in Equation 34 is given
by

som~t =™t ™ [aB™ (0)- 4B ] 4

m .
and we solve for AB¢ according to

ABY = (A7 sang) U s M7

[ae™ -se™ |- 0™ aB}0)- o + a0 )"

. [Um'Sm' M-l gm-1 gm-1 (AB';'_I(O)— AB‘[“‘l)]
(42)

where ABP! is the value of AB; which was applied

in iteration m-1. Inclusion of the background term in
Equation 42 insures second order convergence along
the lines discussed by Rodgers (1976) with regard to
treatment of the g-priori term.

Convergence Crileria

In solving Equation 42, we are attempting to find
solutions to the radiative transfer equations which
minimize weighted residuals of observed and
computed brightness temperatures, corrected for the
background term. To test convergence of the
solution, one should monitor the weighted residual

’ 1/2
R= [ (A©-86) V' V(a0 - 5@)] . 43

where the weight matrix V accounts for noise effects
on the channel residuals, as well as the relative
information content of the channels with regard to the
variables being solved for. For example, if a channel
(or linear combination of channels) carries little
information content in terms of signal to noise, it
should be given little weight in the estimation of the
residual in Equation 43. An appropriate choice of V,
expressing the information content of the channels,

would therefore be V= (A, +4% D7 (U’S’M-1 ) in

which case we obtain
R =[aB’ AB]"? . (44)

As shown in Equation 44, a reasonable way (o
determine if the solution has converged, in terms of
weighted residuals of observed minus computed
brightness temperatures, is to see if the solution has
converged in terms of the iterative changes in the
solution itself. Initially, we set ABj =0 if ®}<0.05,
that is, coefficients of very heavily damped components
with little information content are not believed at all in
any iteration. The solution is said to have converged
when the RSS value of AB}' is less than 10% of the

RSS value of SB™ for all components not set equal to



zero. The iterative procedure is also terminated if the
RSS value of ABY is not less than 75% of that of

AB?'_1 for the non-zero components. This indicates

the solution is not converging rapidly enough and may
be responding primarily to unmodeled noise. The
iterative procedure, which typically converges by 3
iterations, is carried out analogously for all retrieval
steps.

Variables and functions for retrieval steps

As shown in Equation 24, all steps involve expression
of the basic variables X in terms of a set of functions F.
In the temperature profile retrieval step, the temperature
perturbation functions F(P) are 24 trapezoids piecewise
linear in log of pressure, spanning the pressure range
016 mb to the surface, with a perturbation of 0.5K
between pressures P,andP,;, and 0° at
P;4; and P, . In the top and bottom functions, the
top or bottom portion of the trapezoid is missing. The
Jacobian S} is obtained numerically by computing the

channel i brightness temperature for the m™ iterative
temperature profile T™ (P) and subtracting it from the
brightness temperature computed with everything else
fixed but perturbing T™ (P) by one unit of F,(P).

With regard to water vapor and ozone profiles, we
express solutions in the form

g™ (P)=q™ P)[1+ Z AF(P)] (45)

with the functions (L = 11 for water vapor and 8 for
ozone) and methodology for computation of the
Jacobian being completely analogous to those for
temperature profile. In the case of surface variables,
the functions are a discrete value of surface skin
temperature, as well as 9 triangle functions in the
frequency domain dealing with perturbations of surface
emissivity and 3 with surface bi-directional reflectance
of solar radiation. The total precipitable water also can
be adjusted by using Equation 45 with a single function
which is constant as a function of height. The window
channels are sensitive to boundary layer water vapor
but not higher level water vapor. Adjustment of total
precipitable water is used in an intermediate retrieval
step, done before the water vapor retrieval step using
AIRS channels, and improves total low level water
vapor at the expense of upper level water vapor. Table
1 shows the pressure levels used in the temperature
profile, moisture profile, and ozone profile retrieval
steps.
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Table 1. Trapezoid Function Endpoints (mb)

Temperature Moisture Ozone
Retrieval Retrieval Retrieval

0.016 0.016 0.016
0.714 170.1 20.92
1.297 2729 51.53
2.701 314.1 71.54
4.077 343.6 103.0
8.165 407.5 1424

16.43 496.6 300.0

2345 617.5 surface

39.26 706.6

56.13 852.8

71.54 surface

96.11

125.6

160.5

212.0

2729

343.6

424.5

496.7

596.3

661.2

753.6

878.6

surface

Selection of channels

While AIRS has 2378 channels, it is neither necessary
nor optimal to use all the channels in the retrieval
process as the information content of these channels is
highly redundant. Therefore, computational time can
be lowered by limiting the number of channels used. In
a given step, it is preferable to use channels which are
primarily sensitive to the variables being solved for,
while relatively insensitive to  variables not yet
solved for. We also find it desirable to use channels
with sharp localized weighting functions. Kaplan et al.
(1977) show that channels with sharpest weighting
functions lie either in between absorption lines or on



the band head of the 4.3 um CO, band between 2378
cm’ and 2390 cm’. The first set of channels have sharp
weighting functions because of a rapid increase of
absorption coefficient with increasing pressure, while
the second benefit from a rapid increase of absorption
coefficient with increasing temperature in the
troposphere. Such channels form the basic set used for
temperature sounding. Channels in between water
vapor absorption lines also produce very sharp
weighting functions which are preferable for water
vapor sounding and also useful for temperature
sounding if the water vapor distribution is known
accurately. Channels between absorption features are
by definition less opaque than nearby channels situated
on absorption features, and may not have sufficient
opacity to be sensitive to either temperature or
constituents at high enough levels in the atmosphere.
For temperature profile, we select channels in the
CO, Q branch at 667 cm”, which do not have sharp
weighting functions but are sensitive to temperature
variations up to 1 mb. We do not select channels in the
most opaque portion of the 4.3 pm CQO, band because
these channels are sensitive to effects of non-local
thermodynamic equilibrium. For water vapor, we
selected a few channels on the peaks of some of the
strongest absorption features in the 6.7 um water vapor
band to increase the sensitivity to stratospheric and
upper tropospheric water vapor. Window channels are
highly redundant with each other and have been
selected generally on and off closely lying weak
absorption features in the spectral regions from 755
cm’ - 980 c¢m®’, 1070 cm' - 1240 cm’, 2180 cm” -
2192 cm’, and 2390 cm” to 2665 cm”. Cloud filtering
channels are generally a subset of the temperature
sounding channels which are semsitive to the
troposphere. QOur sounding methodology involves two
temperature profile retrieval steps, one (temp 1) before
the water vapor retrieval step, and the other (temp 2)
subsequent to it. In temp 2, we include a number of
channels in the water vapor absorption band which
produce sharp temperature weighting functions. These
channels are treated as “noisy” in the channel noise
covariance matrix to the extent that the prediced
uncertainty in water vapor distribution produces an
appropriate uncertainty in their computed brightness
temperatures. The location of all channels used are
shown in Figure 1. We use 53 channels in the surface
temperature retrieval, 147 channels in the first
temperature profile retrieval, an additional 7 channels
in the second temperature profile retrieval, 66 channels
in the water vapor profile retrieval, and 23 channels in
the ozone profile retrieval. Some channels are used for
more than one purpose. Channels also exist which can
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be used for retrievals of profiles of CH,, CO, and CO,.
These will be described in a future publication.

Table 2 shows the eigenvalues and damping factors for
the second pass temperature profile retrieval, the water
vapor retrieval, and the ozone profile retrieval for a
typical case. Coefficients of eight temperature profile
functions are undamped, and those of two more
functions are only slightly damped, giving about 9
pieces of information about the temperature profile
being contained in the radiances. Roughly 4 1/2 pieces
of information about water vapor are contained in the
radiances, and roughly 1 1/2 pieces of information are
contained about the ozone profile in this case.

Table 2. Sample Eigenvalues and Damping Factors
(®>005)

Temperature Profile Water Vapor Profile Ozone Profile

ABpax =0.75 ABpax =1.0 ABpax =0.75
A o A o A 0]
9440 1.0 69.78 1.0 41.59 1.0
6506 1.0 10.31 1.0 0.745 0419
3681 1.0 2.44 1.0 0.403 0.278
2655 1.0 1.26 1.0 0.139  0.079
1219 10 0.68 0.668

696 10 0.27 0.270

384 1.0 0.09 0.095

1.84 1.0 0.07 0.069

121 0.685

0.80 0447

0.50 0.281

035 0.19

029 0.161

020 O0.114

0.11 0.006

Cloud parameter retrievals

In performing cloud parameter retrievals, all other
variables are assumed known within their estimated
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Figure 1. AIRS spectrum showing channels used in
different retrieval steps. Temperature sounding
channels are red, ozone are green, water vapor are
blue, and surface channels are orange.

errors, allowing us to compute Rc g . The channels

used are the subset of cloud clearing channels that are
not sensitive to solar radiation reflected off the
clouds. The cloud parameter retrieval algorithm is
analogous to that of the other steps but slightly
different. At this time, the cloud retrieval algorithm
has been tested only for the case of assumed cloud
spectral properties in order to determine cloud
fractions and cloud top pressures for up to two layers
of clouds. The method is easily generalizable to
include cloud spectral emissivity by inclusion of an
appropriate set of spectral emissivity functions as
done in the surface parameter retrievals. With known
spectral properties, cloud radiances Ri(PC) can be

calculated based on the surface skin

temperature and atmospheric temperature-moisture-
ozone profile, which have been retrieved from the clear
column radiances and are "known", as a function of
unknown cloud top pressure P. . For two cloud layers

(the method works for any number of cloud layers) we
can write

Rie =~ 0y — 02 ) R; crr

(46)
+ ot R; (Poy )+ 02k R (Pe2)
where R is the radiance computed for channel i in
field of view k covered by (as seen from above) oy
fractional coverage of a cloud at P,; and oy of a
cloud at P, . In the above equation, we have assumed

two types of clouds in each of the fields of view k=1,9,
with different cloud fractions in each field of view. All
clouds were assumed to bave a constant spectral
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emissivity of 0.9. In order to determine the variables
Pc1, P2, 011, 042...» we use observations in the 9

fields of view for the subset of channels used to
determine M which are unaffected by solar radiation.
The noise covariance matrix N used to retrieve cloud
parameters is identical to that used in Equation 4 to
determine m, but for the appropriate subset of channels.

Given the m™ guess cloud parameters ok , 02k . P
and Pe3 , we define

Y =Rix-Rik = (Ri,k ‘Ri.CLR)
g o R -Ri(3)) 7)

and obtain the iterative equation

Y- v = _ le[éhcm -R; @T)j Aok
=L
AP

=X [Sm,Aajk]Aa?l]( + 2 [S?Q.Apcj]APcm (48)

=12 j=12
where the terms in the square brackets are the
appropriate  Jacobians, which are computed

empirically as are all other Jacobians. It should be

JR,
noted that if o, (for all k) and/or — (for all i) are

ap

small for a given P, that cloud top pressure will be
contained primarily in a heavily damped mode and
not be changed significantly from the initial guess.

Error Propagation and Channel Noise Covariance
Matrix

Equations 4 and 30 contain terms such as 8T(P),
indicative of expected errors in state parameters used in
a given pass and step. These errors are case dependent
and can be estimated by propagating expected errors
through the retrieval system. In any iteration, the

estimate of a parameter, such as T(P)™, is given by
L
TP =T(P)) + E]Fj AT w0
=T(P)) + (FUB™), |
where j is a discrete pressure level. There are three
contributions to the expected error 6T(P)J-m. The first



contribution comes from the null space error, arising
from the error of the first guess in the space outside that
of the L functions used to expand the solution. The
second component arises from errors in the coefficients
B™. The last contribution arises from the damping of
the solution in which (1-®) of the first guess (or
previous iteration) is believed for each eigen function
G=FU.

Equations 4 and 30 contain the square of the expected

2
error in state parameter X™, 8X;" , which can be
j

expressed in terms of errors
coefficients A according to

in the expansion

sx™ = ax F2 5Am’ 50
i =% +IhjioAk (50)

where BX? is the null space error and SA™ is the error

in the coefficients A™ used to represent X™ . Errors in
A arise both from errors in the B coefficients and
errors in the damped portion of the m-1 iterative guess.
In every step in the retrieval process, we begin with

parameters X0 having an uncertainty 8X jO. The

uncertainty of the microwave product first guess is
specified based on expected errors, as is the null space

error.  Given 8X°, §A° can be solved for according

to
1/2
8Ak0 = !:(F,Z FZ)—I F,Z (8X0 _ SXN j]

[y

In a given iteration, we can express 8Akm according to
1/2

(51

2
m

o [
SAk = Z‘ Uk[ '
*

(52)

N

2
-1 N?
+2,[U“(1 -olm);UjlaAT ] +3A,
i

m

where —== represents the predicted error in BT due
m ¢

A

to noise propagation, and the second term represents the

portions of the errors B g““l of the previous iterative
profile which are believed in the current iteration.
Given SAE‘ from Equation 52 for the final iterative

step, we compute the square of the corresponding
profile error to be used in Equations 4 and 30
according to Equation 50. This term is carried to the
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next retrieval step and used in Equation 51 to give
5Ax which is in turn used in Equation 52 to generate
the uncertainty in parameter X for use in subsequent
steps.

For moisture and ozone profile, the form of the

expansion is slightly different (see Equation 45) and
we write

m 2 N 2
[Sq (P)} =(5qq<P>) TR AL

q

(53)

Surface spectral emissivity and  bi-directional
reflectance are analogous to temperature profile, as is
skin temperature, in which case F is a number. The
liquid water profile comes from the microwave product
and is not iterated. We assume an error estimate of
20% of the liquid water profile. In addition, if the total
liquid water is less than 0.01 glem’, we consider the
possibility that liquid water may have been missed due
to an error in the water vapor microwave solution. For
these low liquid water solutions, an alternative error
estimate of (2*RH-1)*0.05*q, where RH is the relative
humidity and q is the layer water vapor in mg/em’, is
considered and used if it is larger than 20% of the liquid
water. The null space temperature error is taken as
0.1K in the lower and upper atmosphere, increasing to
0.2K near the tropopause. The null space error in
percent is taken as 5% for water vapor and 10% for
ozone respectively.

Equation 52 is case dependent through the parameters
@, and A, which depend both on the S matrix, and

more significantly on the M matrix. M contains
contributions from clouds, M, and parameter
uncertainty M. The uncertainties determined from
Equations 52, 50, and 53 in turn are used in the
computation of M (Equation 30) and N (Equation 4).

Equations 50 and 53 give the magnitude of the
estimated error in each parameter but contain no
information about sign. If we assume all dX(P) are of
the same sign, we would overestimate the effect of the
uncertainty on that parameter on the computed
radiances. Bearing this in mind, when the derivatives
in Equations 4 and 30 are computed numerically , we
write

JR
L = - 5
IXP) oX(P)= R(X(P) + AX(P))-R(X(P)) (54)



where AX(P) is constructed by multiplying 0X(P) by a
sine wave with a full period of six temperature profile
functions in the case of uncertainty of temperature
profile to be used in the humidity and ozone profile
retrievals, and six humidity profile functions in the case
of water vapor uncertainty to be used in the temperature
and ozome profile retrievals. In the case of ozone
profile, with only seven functions, we simply multiply
the predicted uncertainty by 0.5. We have also found
that in constructing the noise covariance terms in
Equation 4, it is advantageous to set AX =05 &X) for
all profile terms. For surface parameters we take
AX =9X, as for the liquid water profile.

Steps in the processing system

The processing system used in this paper is comprised
of a number of sequential steps listed below. All steps
start from the conditions found in the previous step,
with appropriate computed uncertainty estimates, 8X0,
unless otherwise noted.

1. Use as a starting point the microwave product
which agrees with the AMSU A, HSB
radiances (Rosenkranz, 2000). We follow this
by a temperature profile retrieval using AMSU
A radiances as well as AIRS radiances for
channels that never see clouds, followed by a
water vapor retrieval using HSB channels and
some AMSU A window channels. As part of
the temperature profile retrieval, we also
update the surface skin temperature and
microwave spectral emissivity.

2. Determine an initial §1 from Equation 11
using the atmospheric and surface parameters
obtained in Step 1. We also perform a cloud
parameter retrieval to help determine which IR
channels are not affected by clouds. R1 is

obtained using § in Equation 10.

3. Determine the first guess IR surface
parameters and temperature-moisture-ozone
profile using R} based on a regression step
using most AIRS channels (Goldberg et al.,
2002). Under some difficult cloud conditions,
this first guess is modified in a manner
described later,

4. Produce an improved temperature profile and
microwave spectral emissivity starting from
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the surface and atmospheric parameters
determined in step 3 using the AMSU A
channel radiances and AIRS channel radiances
which do not see clouds. The surface skin
temperature is not updated as it is estimated
better from AIRS radiances than can be
determined from AMSU radiances. This is
followed by an improved water vapor profile
using HSB radiances. '

Determine §2 taking advantage of the refined
parameters. Also determine cloud parameters
to decide which channels do not see clouds so
as to average radiances in these channels when
producing R2 R2 is considerably more
accurate than R} because the surface and
atmospheric parameters obtained from the
AIRS regression step are more accurate than
those from the microwave first product,
especially the infra-red surface spectral
properties which are not determined from the
microwave retrieval.

Perform a surface parameter retrieval using
AIRS surface sounding channels shown in
Figure 1, and AMSU A and HSB window

channels. This produces a new skin
temperature, IR and microwave spectral
emissivity, and IR spectral bi-directional

inflectance. It also includes adjustment of the
entire water vapor profile by a single
trapezoidal function which is constant in the
troposphere and lower stratosphere.

Determine t; taking advantages of the refined
surface parameters, and produce R and new
estimates of cloud parameters.

Use R? to sequentially determine surface
parameters, temperature profile, humidity
profile, and ozone profile. These are called the
first pass retrieved products.

Update the temperature profile, using only
AMSU A radiances and AIRS channel

radiances insensitive to clouds. This profile is
also used in the rejection criteria and is
referred to as the test microwave only retrieval.

Using the first pass retrieved products and
updated temperature profile, determine §4,



final cloud parameters, and the final clear
column radiances R, which is a product of
the system.

14. Repeat steps 8 and 9 using Iif to obtain the

final product surface parameters and
temperature profile. The initial guess used in
the second pass surface parameter and
temperature profile retrievals is identical to
that of the first pass but all other parameters
are updated, such as the clear column
radiances, moisture profile, etc. The noise
covariance matrix is also updated to account
for better estimates of the other parameters. In
addition, channels in the water vapor band
which are highly sensitive to lower
tropospheric water vapor are included in the
final temperature profile step (but not the first
pass) because an accurate moisture profile has
now been retrieved. The moisture profile and
ozone profile retrieval steps are not repeated,
as no appreciable improvement in parameters
resulted from further retrieval steps.

15. Test solution for acceptance. If rejected,
return to the AMSU/HSB retrieval starting
from the initial guess, including AIRS
channels insensitive to clouds, as the “final
microwave only” product. Cloud parameters
for rejected cases are based on this solution
and were determined in step 2.

16. Determine OLR and clear sky OLR using the

appropriate solution for either accepted or
rejected cases.

Adjustment of the First Guess

The first guess temperature profile TO(P) used in step
4 is usually the result of the AIRS regression done in
step 3, T™%¥(P). Under most conditions, this is
considerably more accurate than the microwave product
TM(P) used in step 1. However, under some difficult
cloud conditions, a very poor regression can be
obtained. In general, the regression temperature profile
will degrade below 300 mb with increasing values of
the effective noise amplification factor, and can be
considerably poorer than the microwave retrieval,
especially near the surface. The problem is
compounded, in cases of large effective noise
amplification factor, because temperature sounding
channels sensing the lower troposphere will be treated
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as noisy due to a large contribution of the second term
in the noise covariance matrix (see Equation 20).
Consequently, eigen functions having high vertical
resolution in the lower troposphere will be heavily
damped and the poor vertical structure in the lower
troposphere of the regression guess will be heavily
believed. To help alleviate this problem, we construct a
first guess temperature profile which is a linear
combination of the T*8 (P) and TM(P) below 300 mb.

T(P) =T8(P) + A(P) (T™(P) - T"8(P))  (55)

where A(P)=0 if A, <2.5 and A@®) =1 |if
Ao 2 6.5, with values of A(P) linearly interpolated
between 0 and 1 for intermediate values of A.¢. In
addition, AP)=1 for P <300mb, and A(P) is
linearly interpolated in £nP for intermediate pressure
values between 300 mb and the surface pressure Ps.

Computation of OLR

Outgoing Longwave Radiation (OLR) is computed
from the AIRS products in a manner analogous to
that used to compute OLR from TOVS (Mehta and
Susskind, 1999a, 1999b).

F = (-0 -0 )Fcir + oy Forp(Pe, )+ 02 Ferp(Pe,)

(56)
where Fopp, the clear sky OLR, is the sum of
contributions from 14 spectral bands each with
effective surface emissivity g;

14 ¢nP dr.
Eq g =1 2| gB, (T)T,(P)+ [ By (x)—dénP
i=1 ' mp, +  déoP

= n2F cLr (57

and the band transmittances 1;(P) are computed at
effective zenith angles 8;. The small term related to

downwelling thermal radiation reflected off the
surface and transmitted to space is neglected.
Foup(P.) is computed in an analogous way, in terms
of the cloud spectral emissivity ¢;(P.), and
assuming a cloud transmissivity of (1-&;(P, )]

8i(Pc)Bvi (T¢ Pc ))T, (Pc)

Forp(P, g “FB )'QEL'deP (58)
cLp( C)_-ni= +£nP,: vi(t denP n

H1- & F cLr



The band transmittances T; (P) are parameterized as a

function of temperature, moisture, and ozone profile
(Mehta and Susskind, 1999b)., The spectral cloud
emissivity was assumed to have a constant value of
0.9, to be consistent with what was done in the cloud
parameter retrieval.

Rejection Criteria

A number of tests are done to assess the quality of the
retrieval. The major cause of rejection is difficulty in
dealing with the effects of clouds on the AIRS radiances.

1. Assessment of Cloud Clearing Fit.

Equations 11 and 10 give the solution for the vector §
and the resultant clear column radiances R;. 1If a
successful solution is produced, the ensemble Iii for
the cloud clearing channels i should match the
incoming estimates of clear column radiances R, o1 g
to a reasonable degree. A poor match is indicative of
either a particularly poor first guess or problems in
handling the effects of clouds on the radiances. We

compute the weighted residual of the clear column
radiances used in the computation of { in brightness

temperature units

_ld
AF = 3 (59)

and reject the solution if AF computed when
generating Cl is greater than 1.75K. Equation 59 is
equivalent to taking the residual of clear column
brightness temperatures weighted by the channel noise
covariance in brightness temperature unils.

2. Difficult Cloud Cases.

Cases with extensive cloud cover and low contrast are
particularly difficult. The solution is rejected if the sum
of the final retrieved cloud fractions for all cloud layers is
greater than 80% or the total cloud fraction is greater than
50%, and the total cloud below 500 mb is greater than
10% and the noise amplification factor is greater than 2,
or the noise amplification factor is greater than 3, or the
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effective noise amplification factor is greater than 8. We
also reject cases if the total cloud liquid water determined
by the microwave product is greater than 0.03 gm/cm’.

3. Large Residuals in Second Pass Retrievals.

The general iterative solution is terminated when either

the residual R" (Equation 44) is less than 10% of the
RSS of the predicted noise for each mode AB,,

n—1

(Equation 38) or R" is more than 75% of R
Slow convergence may indicate a poor solution. We
reject the solution if the converged value of R is greater
than the RSS of 8B, in either the surface parameter

retrieval or the temperature profile retrieval in the
second pass. Poor convergence generally indicates

problems with the clear column radiances R,-4 .

4. Inconsistency of Test “Microwave Only”
and Combined IR/Microwave Retrievals.

Under some conditions, the clear column radiances R;*

can be poor but all convergence tests are passed.
Nevertheless, the test microwave only retrieval will
produce low level temperatures which differ
significantly from those of the second pass retrieval.
This generally indicates poor clear column radiances.
The solution is rejected if the RMS differences between
the temperature in the lowest 3 km of the test
microwave only retrieval differs from that of the second
pass retrieval by more than 1.25K.

4, SIMULATION STUDY

The simulation study is based on radiances computed
from conditions derived from a global simulation using
a version of the operational general circulation model
(GCM) from NOAA NCEP for December 15, 2000
(Juang, 1997). Details of the methodology to simulate
the surface and atmospheric conditions for each AIRS
footprint are given in Fishbein et al., 2002.

The test set is the first scan line of every granule (6
minute period) for December 15, 2000. The dependent
data set, on which the regression coefficients are based,
is taken as cloud free radiances computed from the
whole day December 10, 2000. A first guess of all the
geophysical parameters (including surface pressure)
taken from an 18 hour GCM forecast is available for
use in the retrieval. We used only the forecast surface
pressure as it is felt that use of a model forecast first
guess temperature-moisture profile is unnecessary to



analyze AIRS/AMSU data because of the high
information content of the radiances.

The AIRS orbital dataset has the following salient
features within a given scene made up of nine FOV’s:

« variable surface topography and surface
pressure, P,

daytime and nighttime conditions
temperature, T(P), moisture, q(P), ozone,
O,(P), and other trace constituents from the
surface to 0.005 mb

cloud liquid water profiles, £(P), (only
affects microwave)

multiple level cloud conditions within a
FOV, with spectrally varying cloud
emissivity, €44(v), and reflectivity,

-

Peia(v), consistent with atmospheric

conditions. The cloud top pressure,
emissivity, and reflectivity are spatially
varying as well.

variable surface skin temperature, T,,
spectral surface emissivity, £(v) and spectral
surface bi-directional reflectance, p(v).

variable land fraction, with coastlines,
islands, lakes, etc.

orbital simulation with simulated scan lines
with variable viewing angle and solar
zenith angle.

5. RESULTS

There were a total of 7200 cases in the simulation. In
74 cases, the microwave retrieval step failed, and no
retrieval was attempted. Of the remainder, 4604 cases
were accepted. Figure 2 shows the number of cases,
and percent accepted, as a function of fractional cloud
cover, in 0.5% bins. We also show statistics for cases
we classify as “essentially clear” based on the observed
radiances. This “essentially clear” flag can be of use to
the data assimilation community, in which it is common
to assimilate observed channel radiances under clear
conditions. The data assimilation community avoids
cloud contaminated radiances out of fear that noise due
to handling effects of clouds on the radiances may
degrade the resultant analyzed fields. Two potential
problems with this approach are that only a small
number of cases are completely clear, thus limiting the
utility of the sounding data in improvement of forecast
skill, and scenes with small amounts of cloud cover
may be mistakenly classified as clear. Our “essentially
clear” flag is designed to include cases of very small
amounts of cloudiness to increase the yield of cases to
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be assimilated as compared to only 100% clear
situations.

A case is a candidate to be called essentially clear if the
largest eigenvalue of AR'N7'AR is less than 125 for
ocean cases and 225 for land cases. This indicates a
small amount of variability in the radiances in the 3x3
array of AIRS spots. A larger value of radiance
variability is allowed for land cases to be called clear
because surface variability is larger over land than
ocean. We also define a cloud correction value, ABT,
as the average difference of the reconstructed clear
column brightness temperature, ©;, and the 9 spot

average brightness temperature, ©;, for all channels in

the window regions between 800 cm’ and 900 cm’.
For the scene to be declared “essentially clear”, ABT
must be less than or equal to 0.1K. In addition, the
retrieval must be accepted. 431 cases were called
essentially clear. Figure 2 includes the number of cases
called “essentially clear” as a function of actual cloud
cover. The average cloudiness of all cases was 37.14%,
t he average cloudiness of all accepted cases was
31.31%, and the average cloudiness of all cases called
essentially clear was 0.94%. The percentage of cases
accepted drops slowly with increasing cloud cover
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Figure 2. Number of cases as a function of cloud
fraction (black), percentage of successful cases
(mauve), and percentage of cases called essentially
clear (blue).

until about 50%, and then drops off more rapidly after
that. Roughly 40% of those accepted cases with cloud
cover less than 0.5% were identified as “essentially
clear.”

Figure 3 shows statistics for the clear column brightness
temperatures for the 431 essentially clear cases, with
biases shown in Figure 3a and RMS values shown in
Figure 3b. The top panel shows the difference between
the noise free brightness temperatures computed from



the truth for a given scene and the average of the
observed brightness temperatures in the 3x3 array of
AIRS spots in the scene. This is the correction nceded
to make the observed brightness temperatures match the
true values. The second panel shows the difference
between the reconstructed brightness temperatures and
the average observed values. This is the correction
made in the cloud clearing. The third panel shows the
difference between the reconstructed clear column
brightness temperature and that computed from the
truth. This 1s the e¢mor in the reconstructed clear
column brighiness temperature. Also shown in the third
panel of

the RMS statistics is the single spot channel noise.

In the mean sense, “essentially clear” spots needed an
average cloud correction of roughly 0.1K in the 800

cm’ - 1150 cm” region, and essentially none was made
on the average. This resulted in a small cold bias in
this window region in the reconstructed clear column
brightness temperatures. In the RMS sense, corrections
of up to 0.25K were needed in the long wave window
for these cases (some of this is due to channel noise)
and corrections of about 0.1K were made. For the
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Figure 3a. Mean value of cloud correction neecded,
cloud correction made, and errors of cloud cleared
brightness temperature for essentially clear cases.
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Figure 3b. RMS values of cloud correction needed,
cloud correction made, and cloud cleared brightness
temperature errors for essentially clear spots. Single
spot noise is also shown.

most part, the RMS wvalues of the reconstructed
brightness temperatures were comparable to, or smaller
than, the single spot channel noise. Lower values can
arise if either the channel is considered not to see
clouds (the noise amplification factor is 1/3) or the
scene is considered clear or contains very small values

.of M, resulting in noise amplification factors less than

1, provided accurate values of m are obtained.
Radiances for “essentially clear” cases are definitely
suitable for data assimilation purposes.

Figure 4 shows analogous statistics for the 4604
accepted cases for all cloud conditions. On the average,
cloud corrections of almost 12K were needed in the
longwave window region, and the correction made was
slightly smaller than needed, with about a 0.5K
negative bias in reconstructed clear column brightness
temperatures at the worst frequencies.
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Figure 4a. Mean values of cloud correction needed,
cloud correction made, and errors of cloud cleared
brightness temperatures for all accepted cases.
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Figure 4b. RMS values of cloud correction needed,
cloud correction made, and cloud cleared brightness
temperature errors for all cases. Single spot noise is
also shown.

In the RMS sense, reconstructed clear column
brightness temperatures were still comparable to
channel noise throughout most of the temperature
profile sounding regions (650 cm’ — 750 cm” and
2200 cm' - 2400 cm'), but larger than the noise
elsewhere in the spectrum. RMS errors in the water
vapor sounding region are still very small and
radiances in these channels, as well as those in the
temperature sounding region, should be suitable for
data assimilation. We encourage researchers in the
field of data assimilation to test the use of radiances
for all accepted cases. This would substantially
increase the number of cases which can be used and
should further improve forecast skill compared to use
of radiances in just clear or essentially clear cases.

Figure 5 shows RMS temperature errors for the 4604
accepted cases, as well as for the 431 essentially
clear cases. ~ Errors are shown for layer mean
temperatures in roughly 1 km layers from the surface
to 300 mb, 3 km layers from 300 mb to 30 mb, and 5
km layers from 30 mb to 1 mb. Results are shown for
both the regression guess and the final physical
retrieval. Errors of the surface skin temperature are
indicated in the figure, as well as average RMS
temperature profile errors over the layers 700 mb to
the surface and 100 mb to the surface. The physical
retrieval improves considerably over the regression
based retrieval in both clear and cloudy cases with
the largest improvement near the surface. In cloudy
cases, part of this improvement is due to use of more
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Figure 5. RMS temperature profile errors.

accurate clear column radiances as the final physical

retrieval uses n4 while the regression uses nl. This
is not a factor in clear cases however, which still
show significant improvement in RMS errors near the
surface. Retrievals under the multi layer cloud cover
used in this simulation (average cloudiness of

the accepted cases is 31%) degrade over those in
clear situations beneath 150 mb, but are still of high
accuracy. Average tropospheric RMS errors are
0.82K, and average lower tropospheric errors are
0.92K, both exceeding or essentially meeting the 1K
RMS error requirement for AIRS. The RMS error in
the lowest 1 km (1.06K) slightly exceeds 1K
however. Skin temperature errors are 0.25K for clear
cases and 0.59K for all cases. These include land
cases and are affected by uncertainties in surface
spectral emissivity.

Figure 6 shows mean and RMS errors of retrieved
surface skin temperature and 1 km tropospheric
layers up to 344 mb for accepted retrievals as a
function of actual cloud cover. Also shown is the
mean and RMS clear column brightness temperature
error for the 937.8 cm’ window channel. Mean and
RMS errors for most temperatures are not very
sensitive to cloud fraction. Negative biases are



found, which increase slowly with increasing cloud
cover, for the long wave window channel radiance,
the surface skin temperature, and the temperature in
the lowest km of the atmosphere. RMS errors of all
parameters increase slowly with increasing cloud
cover, especially for the lowest km of the
atmosphere.
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Figure 6a. Mean temperature errors as a function of
cloud cover for accepted retrievals.
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Figure 6b. RMS temperature errors as a function of
cloud cover for accepted retrievals.

Figure 7 shows RMS percent errors of the retrievals,
weighted by water vapor amount in the layer, for
integrated column water vapor in roughly 1 km layers
from the surface to 200 mb. The RMS percent errors
of total precipitable water are also indicated in the
figure. Clouds do not degrade the retrieval profile
accuracy appreciably. Part of this result may be due
to sampling differences between clear and cloudy
areas.
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Figure 7. RMS humidity profile % errors.

Clouds degrade the total precipitable water accuracy
by 2.5%, but the 3.8% error of total precipitable
water for all cases is still extremely good. 1 km layer
precipitable water errors in the troposphere are
generally better than 20% in the cloudy cases in
layers up to about 235 mb. Clear cases RMS % errors
appear worse than all case errors in the upper
troposphere. This is probably the result of clear cases
being considerably dryer than cloudy cases and more
difficult to retricve on a percentage basis.

Figure 8 shows weighted percent errors in the ozone
profile retrievals in roughly 4 km layers from 260 mb
to 2.15 mb and in one coarse layer from 260 mb to
the surface. Also shown is the percentage error in
total ozone, which is 2.4% for clear cases and 2.6%
for cloudy cases. The RMS profile errors are better
than 8% in all layers in both clear and cloudy cases.
The physical retrieval improves tropospheric ozone
retrievals considerably over what is obtained by
regression.
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Figure 8. Ozone profile retrieval errors.

The accuracy of cloud parameters cannot be compared
in a straightforward manner because of the existence
of two cloud layers in some (most) scenes. The
retrieved cloud fractions are effective, both because of
errors in retrieved cloud top pressure and assumed
cloud spectral emissivity. In the retrieval process,
cloud spectral emissivity was always assumed to be
0.9 while the true cloud spectral emissivity varied a
few percent from that. Two straightforward
parameters to compare are total cloud fraction oy +

o, and OLR. The OLR validates

the cloud parameters, as well as all other parameters,
in a radiative sense. Clear sky OLR (FcLr) is also

useful to validate all parameters with the exception of
clouds. Accuracies should be better for accepled
cases than for rejected cases, because cloud products
and all other parameters for rejected cases are based
on the AMSU retrievals which are less accurate.

Table 4 shows statistics for retrieved cloud cover,
OLR and clear sky OLR for accepted and rejected
cases. The errors for rejected retrievals are poorer
than for accepted retrievals, but all products should
be useful for climate studies. The OLR product is
complementary to OLR measured more directly from
CERES, also on the Aqua platform, in that the AIRS
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derived product will explain variations of OLR and
clear sky OLR in space and time in terms of
variations of surface and atmospheric parameters,
including cloud cover and height.

Table 4. Retrieved Cloud Fraction and OLR Errors

Accepted Cases Rejected Cases

Number 4604 2522
Average Cloud Cover 31.31% 47.12%
Bias 1.98% -1.17%
RMS Error 6.33% 11.75%
Average OLR 221.8 W/m® 196.2 W/m’
Bias -1.28W/m'  0.38 W/m’
RMS Error 294 W/m' 520 W/m’
Average CLROLR 2530 W/m’ 238.8 W/m’
Bias -1.60W/m*  -1.81 W/m’
RMS Error 257 Wim'  6.76 Wm'
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